Computational and Experimental Analysis of the Secretome of Methylococcus capsulatus (Bath)

نویسندگان

  • Stine Indrelid
  • Geir Mathiesen
  • Morten Jacobsen
  • Tor Lea
  • Charlotte R. Kleiveland
چکیده

The Gram-negative methanotroph Methylococcus capsulatus (Bath) was recently demonstrated to abrogate inflammation in a murine model of inflammatory bowel disease, suggesting interactions with cells involved in maintaining mucosal homeostasis and emphasizing the importance of understanding the many properties of M. capsulatus. Secreted proteins determine how bacteria may interact with their environment, and a comprehensive knowledge of such proteins is therefore vital to understand bacterial physiology and behavior. The aim of this study was to systematically analyze protein secretion in M. capsulatus (Bath) by identifying the secretion systems present and the respective secreted substrates. Computational analysis revealed that in addition to previously recognized type II secretion systems and a type VII secretion system, a type Vb (two-partner) secretion system and putative type I secretion systems are present in M. capsulatus (Bath). In silico analysis suggests that the diverse secretion systems in M.capsulatus transport proteins likely to be involved in adhesion, colonization, nutrient acquisition and homeostasis maintenance. Results of the computational analysis was verified and extended by an experimental approach showing that in addition an uncharacterized protein and putative moonlighting proteins are released to the medium during exponential growth of M. capsulatus (Bath).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of individual copies of Methylococcus capsulatus bath particulate methane monooxygenase genes.

The expression of the two gene clusters encoding the particulate methane monooxygenase (pMMO) in Methylococcus capsulatus Bath was assessed by analysis of transcripts and by use of chromosomal gene fusions. The results suggest that the two clusters are functionally redundant but that relative expression alters depending on the copper levels available for growth.

متن کامل

The Soil Bacterium Methylococcus capsulatus Bath Interacts with Human Dendritic Cells to Modulate Immune Function

The prevalence of inflammatory bowel disease (IBD) has increased in Western countries during the course of the twentieth century, and is evolving to be a global disease. Recently we showed that a bacterial meal of a non-commensal, non-pathogenic methanotrophic soil bacterium, Methylococcus capsulatus Bath prevents experimentally induced colitis in a murine model of IBD. The mechanism behind the...

متن کامل

Steady-state kinetic analysis of soluble methane mono-oxygenase from Methylococcus capsulatus (Bath).

A steady-state kinetic analysis of purified soluble methane mono-oxygenase of Methylococcus capsulatus (Bath) was performed. The enzyme was found to follow a concerted-substitution mechanism. Methane binds to the enzyme followed by NADH, which reacts to yield reduced enzyme and NAD+. The reduced enzyme-methane complex binds O2 to give a second ternary complex, which breaks down to release water...

متن کامل

Structure and Protein–Protein Interactions of Methanol Dehydrogenase from Methylococcus capsulatus (Bath)

In the initial steps of their metabolic pathway, methanotrophic bacteria oxidize methane to methanol with methane monooxygenases (MMOs) and methanol to formaldehyde with methanol dehydrogenases (MDHs). Several lines of evidence suggest that the membrane-bound or particulate MMO (pMMO) and MDH interact to form a metabolic supercomplex. To further investigate the possible existence of such a supe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014